
Globus Security Deep Dive

GlobusWorld 2014
Steve Tuecke

Globus Federated Identity
Authentication and Linking

Linking a Federated Identity

User A chooses
alternate IdP,
IdP1, to log in

Redirected to
IdP1

Linking a Federated Identity
Prompt for login

User A
Authenticates OAuth

interactions
User A’s identity:
userA@IdP1.org

!  userA@IdP1.org

Check for linked
Globus account

Linking a Federated Identity

Prompt for login
with Globus

account

User A
Authenticates

!  userA@IdP1.org

! globususerA@globus.org

Linking a Federated Identity

!  userA@IdP1.org

! globususerA@globus.org

User A chooses
alternate IdP,
IdP1, to log in

User A logged in as
globususerA@globus.org

with linked identity

Login with Federated Identity
User A is redirected &

authenticates

!  userA@IdP1.org

! globususerA@globus.org

User A logs in
using alternate

IdP: IdP1

OAuth
interactions

User A’s identity:
userA@IdP1.org

!  userA@IdP1.org

User A logged in as
globususerA@globus.org

Using Campus IdP (via CILogon)

User A is
redirected
to CILogon

! userA@uchicago.edu
! globususerA@globus.org

User A logs
in using

Campus IdP

User A is redirected
to Campus IdP

CILogon

Using Campus IdP (via CILogon)

! userA@uchicago.edu
! globususerA@globus.org

User A logs
in using

Campus IdP
CILogon

Prompt for login

User A
Authenticates

SAML
interactions

User A’s identity:
userA@uchicago.edu
(optional attributes)

Using Campus IdP (via CILogon)

! userA@uchicago.edu
! globususerA@globus.org

User A logs
in using

Campus IdP

OAuth
interactions

User A’s credentials with
identity :userA@uchicago.edu

(optional attributes)

! userA@uchicago.edu

CILogon

User A logged in as
globususerA@globus.org

Future Identity Directions

•  Move to user@domain user names
– Current Globus usernames become

user@globus.org
– Users not required to have @globus.org name

•  Auto-provision accounts from other
identity domains

•  XSEDE identities will fold into this

Globus Endpoint
Authentication

13

14

Globus Sharing Security

Globus Sharing

Data
Source

User A selects
file(s) to share,
selects user or
group, and sets
permissions

1

Globus manages
ACLS on shared files;
no need to move files
to cloud storage!

2

User B logs in to
Globus and

accesses shared
file

3

Configuring a Managed Endpoint
for Sharing

MyProxy OAuth
Data

Source

Admin configures Managed Endpoint
/etc/globus-connect-server.conf

Configurable policies:
§  Enable share
§  Share restricted path
§  Read only or Read/Write
§  Local users that can share

Globus Connect Server
trusts MyProxy OAuth

Activate Endpoint

!  User A’s credentials

MyProxy OAuth
Data

Source

User A authenticates
using resource
credentials

User A selects
endpoint to activate

User A’s credentials
returned to Globus

Create Share
Data

Source

User A creates a shared
endpoint, userA#share
for path /projects/

!  User A’s credentials

Create Share

!  User A’s credentials

Data
Source

Authenticate as
User A

User A creates a shared
endpoint, userA#share
for path /projects/

Create Share

!  User A’s credentials

Data
Source Does the endpoint

allow shared endpoint
for path /projects/?

Yes

User A creates a shared
endpoint, userA#share
for path /projects/

Create Share

!  User A’s credentials

Data
Source

Create share: UUID
and /projects/

User A creates a shared
endpoint, userA#share
for path /projects/

!  For User A, file
share.UUID with
path /projects/

! userA#share, UUID, User A’s
credentials, /projects/

Set permissions
Data

Source

User A sets permissions
for User B to read path
userA#share:/dir1

!  ACL: userA#share:/dir1, read, User B

!  User A’s credentials
! userA#share, UUID, User A’s

credentials, /projects/

!  For User A, file
share.UUID with
path /projects/

List Share
Data

Source

Check ACLs
for User B

User B lists
userA#share:/dir1

!  ACL: userA#share:/dir1, read, User B

!  User A’s credentials
! userA#share, UUID, User A’s

credentials, /projects/

!  For User A, file
share.UUID with
path /projects/

!  ACL: userA#share:/dir1, read, User B

List Share
Data

Source Authenticate as
Globus

User B lists
userA#share:/dir1

!  ACL: userA#share:/dir1, read, User B

!  User A’s credentials
! userA#share, UUID, User A’s

credentials, /projects/

!  For User A, file
share.UUID with
path /projects/

List Share
Data

Source

User B lists
userA#share:/dir1

!  ACL: userA#share:/dir1, read, User B

!  User A’s credentials
! userA#share, UUID, User A’s

credentials, /projects/

!  For User A, file
share.UUID with
path /projects/

Request sharing from
UUID with User A’s
credentials

Get User A’s
local account

List Share
Data

Source

User B lists
userA#share:/dir1

!  ACL: userA#share:/dir1, read, User B

!  User A’s credentials
! userA#share, UUID, User A’s

credentials, /projects/

!  For User A, file
share.UUID with
path /projects/

Check for User
A’s share.UUID
file

Request sharing from
UUID with User A’s
credentials

List Share
Data

Source

User B lists
userA#share:/dir1

!  ACL: userA#share:/dir1, read, User B

!  User A’s credentials
! userA#share, UUID, User A’s

credentials, /projects/

!  For User A, file
share.UUID with
path /projects/

Load and enforce
sharing restricted
path

Request sharing from
UUID with User A’s
credentials

List Share
Data

Source

User B lists
userA#share:/dir1

!  ACL: userA#share:/dir1, read, User B

!  User A’s credentials
! userA#share, UUID, User A’s

credentials, /projects/

!  For User A, file
share.UUID with
path /projects/

Setuid to User A local
account, change root to
path

Request sharing from
UUID with User A’s
credentials

List Share
Data

Source

User B lists
userA#share:/dir1

!  ACL: userA#share:/dir1, read, User B

!  User A’s credentials
! userA#share, UUID, User A’s

credentials, /projects/

!  For User A, file
share.UUID with
path /projects/

Path restrictions for
User B

Combine user path
restrictions, & sharing
restricted path

List Share
Data

Source

User B lists
userA#share:/dir1

!  ACL: userA#share:/dir1, read, User B

!  User A’s credentials
! userA#share, UUID, User A’s

credentials, /projects/

!  For User A, file
share.UUID with
path /projects/

Directory listing

Transfer from share
Data

Source

User B transfer from
userA#share:/dir1

!  ACL: userA#share:/dir1, read, User B

!  User A’s credentials
! userA#share, UUID, User A’s

credentials, /projects/

!  For User A, file
share.UUID with
path /projects/

Data
Destination

Enforce share
permissions

Data
Destination

Transfer from share
Data

Source

User B transfer from
userA#share:/dir1

!  ACL: userA#share:/dir1, read, User B

!  User A’s credentials
! userA#share, UUID, User A’s

credentials, /projects/

!  For User A, file
share.UUID with
path /projects/

Globus moves
the files

Future Possible Sharing Directions

•  Share to users by email address
•  Level of Assurance policies

– E.g., In order to write to a shared endpoint, user
must have authenticated with one of these IdPs,
in the last N minutes, within this browser session.

•  Time-based shared endpoints
•  Time-based ACLs
•  Periodic re-validation of shared endpoints

Operational Security

Operational Security

•  Separate AWS security groups for:
– Nexus vs Transfer, Production vs Test and QA
– Check ports hourly

•  Central logging with Nagios monitoring
•  OSSEC intrusion detection
•  Globus root CA for sharing access on

offline hardware security module

Who has access to what?

•  Access to production backends
restricted to only those ops staff who
need it to operate the service.

•  Globus Connect Server endpoint
restrictions prevent Globus ops access

What data does Globus see?

•  User profile: email, name, etc.
•  Linked identities: no secrets stored

–  With OAuth, we never see passwords

•  Temporary user credentials
•  File paths, but NOT file contents
•  File level transfer logs retained for 1 month
•  Summary level transfer history retained

indefinitely
•  Publication metadata

