

Optimizing Data Management at the Advanced Light Source with a Science DMZ

Eli Dart, Network Engineer ESnet Network Engineering Group

GlobusWorld 2013

Argonne, II

April 17, 2013

Outline

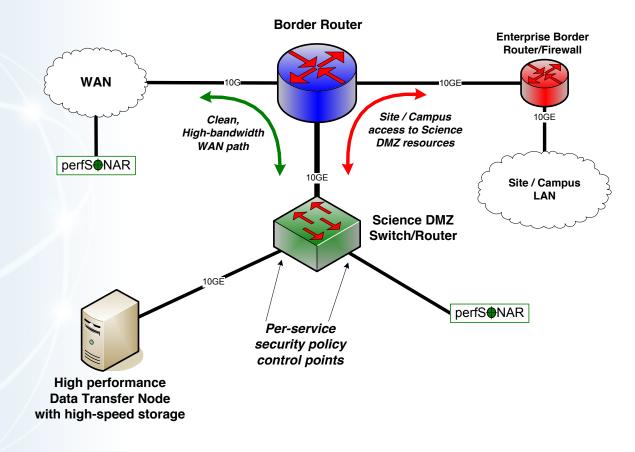
Science DMZ background

ALS Workflow

Future Work

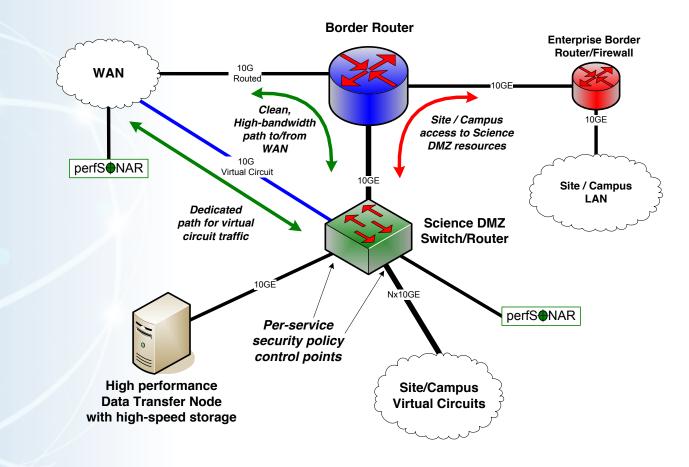
Science DMZ Background

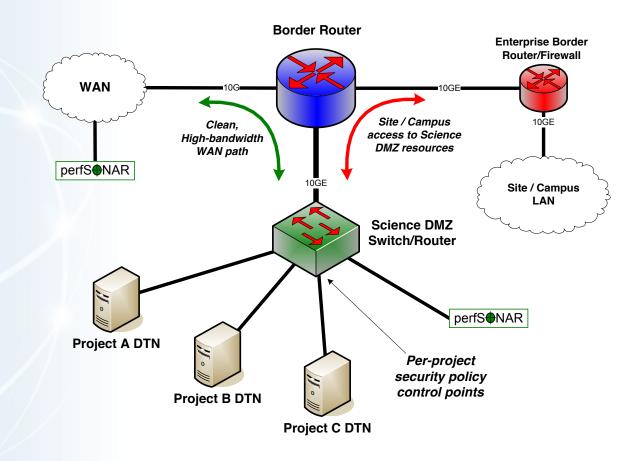
The data mobility performance requirements for data intensive science are beyond what can typically be achieved using traditional methods


- Default host configurations (TCP, filesystems, NICs)
- Converged network architectures designed for commodity traffic
- Conventional security tools and policies
- Legacy data transfer tools (e.g. SCP)
- Wait-for-trouble-ticket operational models for network performance

The Science DMZ model describes a performance-based approach

- Dedicated infrastructure for wide-area data transfer
 - Well-configured data transfer hosts with modern tools
 - Capable network devices
 - High-performance data path which does not traverse commodity LAN
- Proactive operational models that enable performance
 - Well-deployed test and measurement tools (perfSONAR)
 - Periodic testing to locate issues instead of waiting for users to complain
- Security posture well-matched to high-performance science applications


Science DMZ – Simple Abstract Cartoon


Science DMZ With Virtual Circuits/Openflow

Science DMZ Supporting Multiple Projects

The Science DMZ in 1 Slide

Consists of three key components, all required:

"Friction free" network path

- Highly capable network devices (wire-speed, deep queues)
- Virtual circuit connectivity option
- Security policy and enforcement specific to science workflows
- Located at or near site perimeter if possible

- Hardware, operating system, libraries all optimized for transfer
- Includes optimized data transfer tools such as Globus Online and GridFTP

Performance measurement/test node

perfSONAR

Details at http://fasterdata.es.net/science-dmz/

Photon Science Data Increase

Many detectors are semiconductors

- Similar technology to digital cameras
- Exponential growth
- Increase in sensor area (512x512, 1024x1024, 2048x2048, ...)
- Increase in readout rate (1Hz, 10Hz, 100Hz, 1kHz, 1MHz, ...)

Data infrastructure needs significant change/upgrade

- Most photon scientists are not "computer people"
 - Different from HEP, HPC centers
 - They need data issues solved they don't want to solve them
 - They should not have to be come network experts!
- Physical transport of portable media has reached breaking point
- Default configs no longer perform well enough

ALS Beamline 8.3.2

Broad science portfolio: Applied science, biology, earth sciences, energy, environmental sciences, geology, cosmological chemistry

Detector upgrade → large increase in data rate/volume (50x)

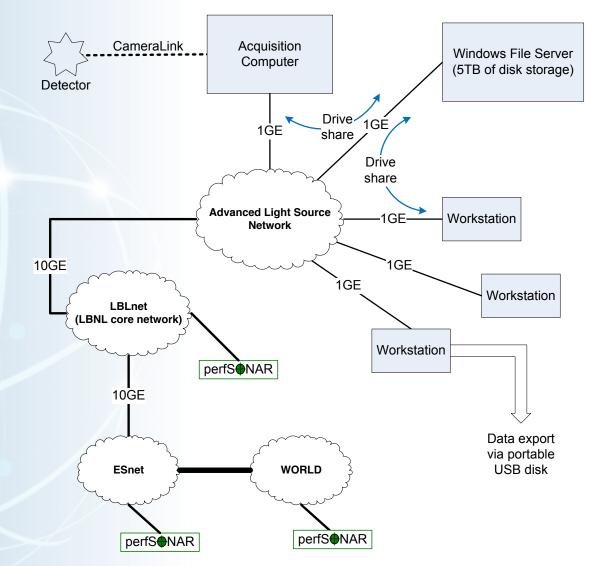
Detector output: sets of large TIFF files

Beamline scientist Dula Parkinson reached out to LBLnet

LBLnet reached out to ESnet

Infrastructure improvements

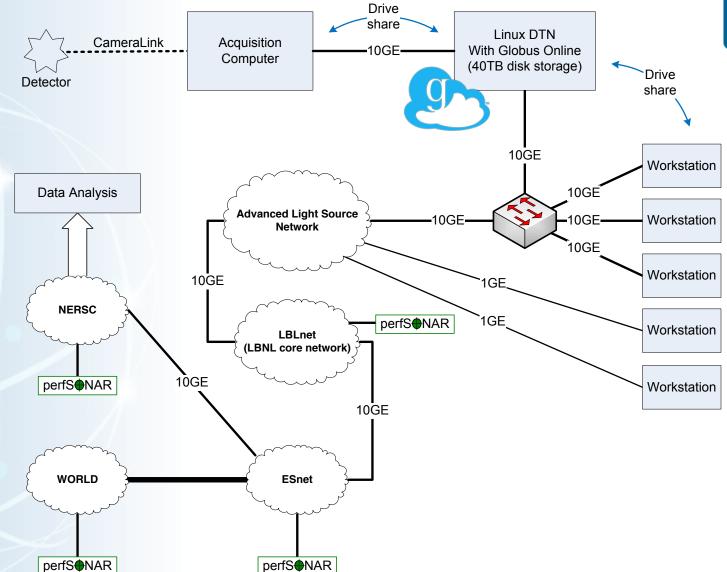
- Used perfSONAR to find failing router line card
- DTN built from Fasterdata reference design


NERSC collaboration

- Data workflow (python scripts, etc.)
- Data analysis

Collaboration is ongoing

Original Workflow Infrastructure


Original Workflow

- 1. Data acquisition uses LabView
- 2. Data written to shared drive on firewalled Windows server
- 3. Analysis done on workstations
 - High-powered Windows hosts
 - Mix of proprietary and open-source tools
 - Scientists can be physically present or use Remote Desktop
- 4. Data export post-analysis physical transport of portable media
 - USB hard drives

Improved Workflow Infrastructure

12

Improved Workflow

- 1. Data acquisition uses LabView
- Data written to SAMBA share on beamline Linux DTN
 - Writing via SAMBA is faster than local disk on acquisition computer
 - Data are TIFF files ~10MB each, ~1000 files per data set
 - Current max performance is ~200MB/sec
- 3. Automated workflow pushes data to NERSC for analysis
 - Workflow managed using signal files
 - Data set is rolled up into an HDF5 file
 - Python scripts drive Globus Online CLI
 - Data transferred to NERSC DTNs at ~300MB/sec
- 4. Analysis results pulled back to beamline DTN
 - Additional analysis done on workstations (still use some proprietary tools)
 - Primary data export is via Globus Online from beamline DTN

Future Work

Stop here – hats off to the G.O. folks, esp. Raj and lan

- Good tools
- Responsive support
- Openness to feature requests
- Increases in scientific productivity

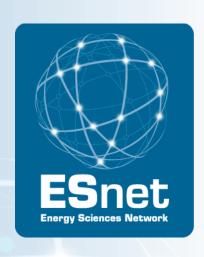
Prioritize data acquisition over other operations on DTN Generalizable config for windows DAQ and Linux DTN Lots of AAA questions

- How to integrate with existing systems
- Experiment-specific credentials

Integration with portals
Integration with experiment software

Wrap

Good data mobility tools are a critical part of the Science DMZ model


- Interface to "the network" for many users
- Globus Online provides a good combination of usability and power

Photon science is seeing significant data rate/volume increases

- Increased infrastructure requirements
- Change in workflow
- Need for collaboration with experts: networks, systems, software

One example shown here – ALS beamline 8.3.2

This will need to be replicated – many facilities, many beamlines

Questions?

Thanks!

Eli Dart - dart@es.net

http://www.es.net/

http://fasterdata.es.net/

