

Materials Data Facility Streamlined and automated data sharing, discovery, access, and analysis

Ben Blaiszik^{1,2} (blaiszik@uchicago.edu), Logan Ward¹ (loganw@uchicago.edu) Ian Foster (foster@uchicago.edu)^{1,2}, Jonathon Gaff¹, Kyle Chard¹, Jim Pruyne¹, Rachana Ananthakrishnan¹, Steven Tuecke¹ Michael Ondrejcek³, Kenton McHenry³, John Towns³ University of Chicago¹, Argonne National Laboratory², University of Illinois at Urbana-Champaign³

> materialsdatafacility.org globus.org

National Institute of Standards and Technology U.S. Department of Commerce

Team (unordered)

Ian Foster (PI)

Jim Pruyne

Logan Ward

Kyle Chard

Stephen Rosen

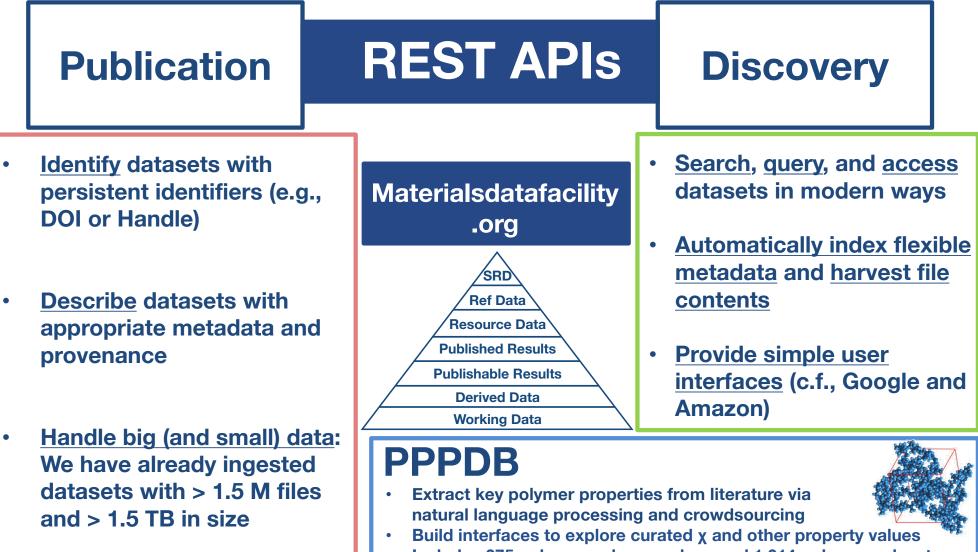
Illinois (Urbana-Champaign)

John Towns (PI)

Kenton McHenry

Michal Ondrejcek

Rachana


Ananthakrishnan

Jonathon Gaff

Streamline and automate: Four keys

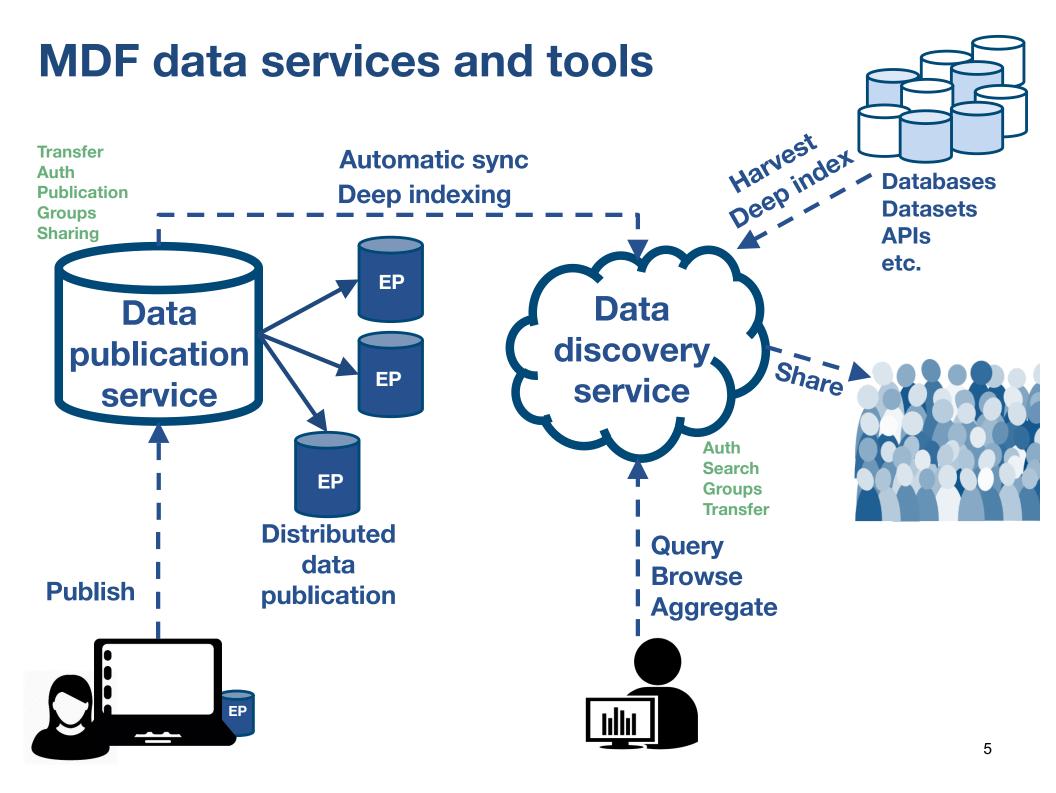
- <u>Simplify data publication</u>, regardless of size, type, and location
- <u>Automate data and metadata ingest</u>, to enable capture of many valuable materials datasets
- Enable <u>unified search</u> of disparate materials data sources
- <u>Deploy APIs</u> to foster community development, data creation, and data consumption

Streamline and automate

Includes 375 polymer-polymer values and 1,014 polymer-solvent values

National Institute of Standards and Technology U.S. Department of Commerce

MATERIALS


FACIL

Data publication

Data publication service

🖭 globus	Publish Manage Data - Groups St	upport - blaiszik -	globus	Publish Manage Data - Gro	ups Support - blaiszik -
	Browse & Discover Data Publication Dashboard Communities &	+ Collections		Browse & Discover Data Publication Dashboard Com	munities & Collections
License Describe Descr	ibe Globus Transfer Verify Complete		Search		Q
Submit: Desc	cribe this Dataset 😢		Please use this identifier to cite or lin	nk to this item: http://bit.ly/1EGh9UL	Admin Tools
Please fill further information	about this submission below.		Title:	Al-Cu Coarsening 4D Tomography Dataset	Configure
Material	Al-Cu		Authors:	Fife, J.L. Gibbs, J.W. Gutsoy, E.B.	Export Item Export (migrate) Item
Volume Fraction Al Volume Fraction Cu	15			Park, CL Thornton, K. Voorhees, P.W.	Export metadata
Technique	85 x-ray tomography		Keywords:	in situ 4D coarsening	
Pixel size (µm)	14			aluminum-copper alloys dynamic morphological evolution solid-liquid interfaces	
Beam energy (keV)	20		Issue Date:	2014	
Instrumentation	Swiss Light Source - Tomographic Microscopy and Coherent Radiology Experiments beamline		Publisher: URI:	Northwestern University http://bit.ly/1EGh9UL	
Enter appropriate subject keywords			Appears in Collections:	Voorhees Group X-Ray Tomography	
Keywords	in situ	💼 Remove Entry	Files in This Item:		
	4D coarsening	 Remove Entry Remove Entry 			
	aluminum-copper alloys dynamic morphological evolution solid-liquid interfaces		globuspublish#jcpublish-test/mdf_		
			Show full item record		
		 Remove Entry Add More 			
	< Previous Cancel/Save	Next >	Items in Globus are protected by co	opyright, with all rights reserved, unless otherwise indicated.	

- Mechanisms to create and enforce schemas and logical collections
- Web UI to create datasets and manage curation and admin tasks
- Tools to automate publication process

- Dataset record permanent landing page for DOI link
- Record shows some metadata links to the rest
- Direct link to underlying files
- Download statistics

Tool to automate data publication

User perspective

Setup endpoint at data origin and create config (one time)

Publish!

4

Collect data on EP

Configure

Publish dataset

autopublish.publish(**config)

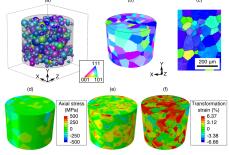
Tool to automate data publication

User perspective

2

Setup endpoint at data origin and create config (one time)

Collect data on EP

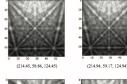


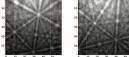
Behind the scenes

- Publication created in MDF Data Publication service
- Directory created on publication endpoint
- ACLs set on endpoint as defined by collection
- Submitted metadata added to the database and verified against schema
- Transfer automated between origin and publication endpoint
- (optional) Curation flow started
- DOI minted
- Metadata registered in search \rightarrow metadata pushed to MRR

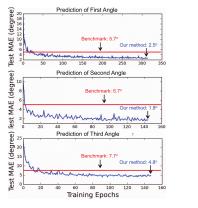
Published Data Highlights

Grain Structure, Grain-averaged Lattice Strains, and Macro-scale Strain Data for Superelastic Nickel-Titanium Shape Memory Alloy Polycrystal Loaded in Tension

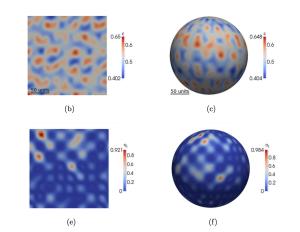



 Largest dataset to date (>1.5 TB). Showcases MDF unique capabilities and makes a unique dataset discoverable for code development, analysis, and benchmarking

Paranjape et al.


http://dx.doi.org/10.18126/M2NK5W

Electron Backscattering and Diffraction Datasets for Ni, Mg, Fe, Si


(22243, 44.23, 182.46) (19723, 50.39, 127.96) Figure 2: Examples of four EBSD patterns, each denoted with its corresponding Euler angles $(\varphi_1, \Phi, \varphi_2)$, used as regression target in deep net training. The upper left and upper right patterns are very similar, and also have a small difference in target angles.

Marc De Graef et al.

http://dx.doi.org/doi:10.18126/M2D593

Phase Field Benchmark I Dataset

Jokisaari et al. http://dx.doi.org/doi:10.18126/M2101X

X-ray Scattering Image Classification Using Deep Learning

R	Ring		Halo		Diffuse low-q	
Isotropic	Anisotropic	Isotropic	Anisotropic	Isotropic	Anisotropic	
					-	
Real images				0	44	
Synthetic images			N.		0	
Syntheti	5		5	0	<mark>@</mark> —	

layer name	output size	kernels			
conv1	112×112	7×7, 64, stride 2			
		3×3 max pool, stride 2			
conv2_x	56×56	$1 \times 1,64$			
conv2_x	30×30	$3 \times 3,64$	$\times 3$		
		$1 \times 1,256$			
		$1 \times 1, 128$			
		$3 \times 3, 128$	×4		
conv3_x	28×28	$1 \times 1,512$			
		$1 \times 1,256$			
		$3 \times 3,256$	×		
conv4_x	14×14	$1 \times 1,1024$			
		$1 \times 1,512$			
		$3 \times 3, 512$	×		
conv5_x	7×7	$1 \times 1,2048$			
pooling	1×1	average pooling			
fc	1×1	2048×num of attributes			

Yager et al.

http://dx.doi.org/10.18126/M2Z30Z

Data discovery and demos

MDF data search: ingest and indexing

Q

Data index	Data sources	1M ecords	
	6 Repositories harvested	MDF NIST MML Repo MATIN	
Metadata	~200 Datasets	 Materials Commons CXIDB 	
index	~260 TB Made discoverable	 NDS Materials Resource Registry 	

>2.75 PB Identified for future indexing

MDF data ingest and indexing

Start your search here

Datasets/Databases

- NanoMine (CHiMaD)
- PPPDB (CHiMaD)
- Khazana Polymers
- Khazana VASP
- Ab Initio Solute Solvent Diffusion
 Dataset
- JANAF (NIST)
- Harvard Organic Photovoltaic Database
- SLUCHI (VASP)
- Crystallography Open Database
- Classical Interatomic Potentials (NIST)
- Interatomic Potentials Repository
 (NIST)
- XAFS Data Library

- Lytle XAFS Dataset
- OQMD (CHiMaD)
- NREL Organic Electronic DB
- CoRE Metal-organic Frameworks
- MD Trajectories of C₇O₂H₁₀

Repositories

- MDF (CHiMaD)
- MATIN
- Materials Commons
- CXIDB
- MML Repository (NIST)

Q

Unified search across repositories, datasets, and DBs

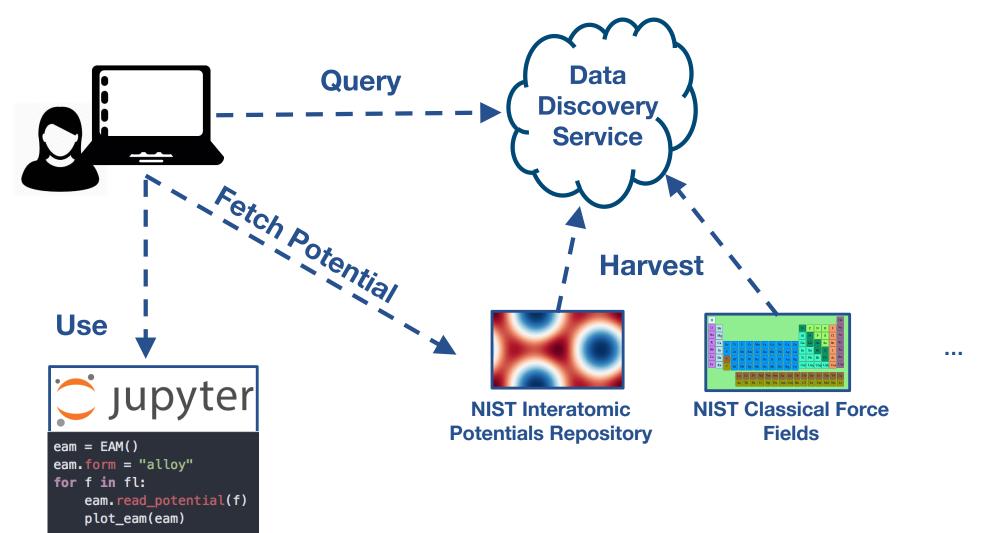
Problem: Many materials data repositories, databases, and datasets exist but interfaces and access to them are fragmented

In this example: NanoMine, PPPDB, MML Repository (NIST), MATIN, Materials Commons (publications), CXIDB, linking with MRR...

Unified search across repositories, datasets, and DBs

<u>Problem</u>: Many materials data repositories, databases, and datasets exist but interfaces and access to them are fragmented</u>

			Morgan		
chi PS					
All C Endpoints Files	Public	cations 🔾 Materials Data Facility	○ All ○ Endpoints ○ Files ○) Public	cations 🗿 Materials Data Facility
Data Acquisition Metho	d	You are searching as Ben Blaiszik (<i>blaiszik@gmail.com</i>)	Data Acquisition Method		You are searching as Ben Blaiszik (blaiszik@gmail.com)
 transmission electr dielectric and impe 	(20) (14)	Search Results	 DFT computational density functional 	(1) (1) (1)	Search Results
 raman spectroscopy scanning electron m 	(14) (14) (14)	PPPDB - Chi Parameter for polystyrene and polycarbonate	Material Composition		Au - HCP - Migration energy Collection: NIST DSpace (Metadata) Author: Morgan, Dane
 xray diffraction an atomic force micros differential scanni 	(14) (6) (4)	Collection: Polymer Property Predictor Database Author: Christopher M. Evans,John M. Torkelson	Al Au Ca	(1) (1) (1)	Elemental vacancy diffusion for fcc and hcp structures
Collection		PPPDB - Chi Parameter for polystyrene and Poly(vinyl chloride)	Cu Fe	(1) (1)	Collection: NIST DSpace (Metadata) Author: Angsten, Thomas,Mayeshiba, Tam,Wu, Henry,Morgan, Dane
 Polymer Property Pr Nanomine 	(388) (24)	Collection: Polymer Property Predictor Database Author: Christopher M. Evans,John M. Torkelson	☐ Ir ☐ Mg	(1) (1)	Elemental vacancy diffusion for fcc and hcp structures spreadsheets for plots
	(1)	PPPDB - Chi Parameter for polystyrene and poly(methy- methyl acrylate)	Mo Ni Pb	(1) (1) (1)	Collection: NIST DSpace (Metadata) Author: Angsten, Thomas,Mayeshiba, Tam,Wu, Henry,Morgan, Dane
		Collection: Polymer Property Predictor Database Author: Christopher M. Evans,John M. Torkelson	Collection		Dataset for High-throughput Ab-initio Dilute Solute Diffusion Database
		PPPDB - Chi Parameter for Poly(n-hexyl methacrylate) and poly(styrene)	 NIST DSpace (Metada MDF Open 	(3) (1)	Collection: MDF Open Publication Date: October 12, 2016 5:09 PM Author: Wu, Henry,Mayeshiba, Tam,Morgan, Dane
		Collection: Polymer Property Predictor Database Author: Christopher M. Evans.John M. Torkelson			Material Composition: Al,Au,Ca,Cu,Fe,Ir,Mg,Mo,Ni,Pb,Pt,W Data Acquisition Method: density functional theory,computational,D


Results from PPPDB

Results from MML Repository and MDF

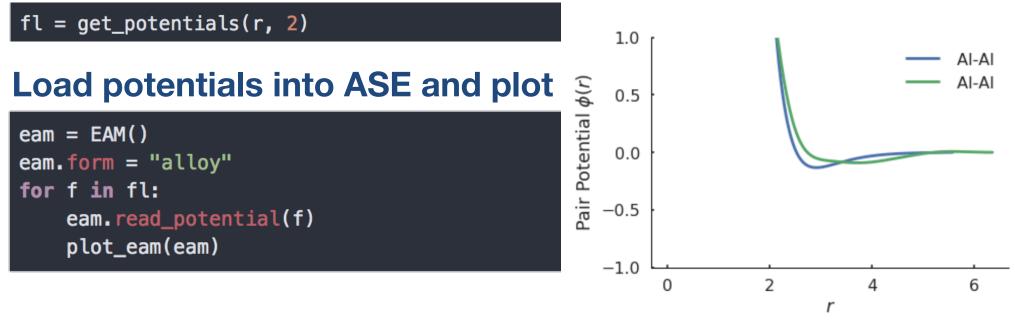
In this example: NanoMine, PPPDB, MML Repository (NIST), MATIN, Materials Commons (publications), CXIDB, linking with MRR...

Finding and using interatomic potentials

Problem: Materials data exist in disparate locations, but finding and importing them into analysis scripts is time consuming

In this example: NIST Interatomic Potentials Repository, NIST Classic Potentials

Finding and using interatomic potentials


Problem: Materials data exist in disparate locations, but finding and importing them into analysis scripts is tricky

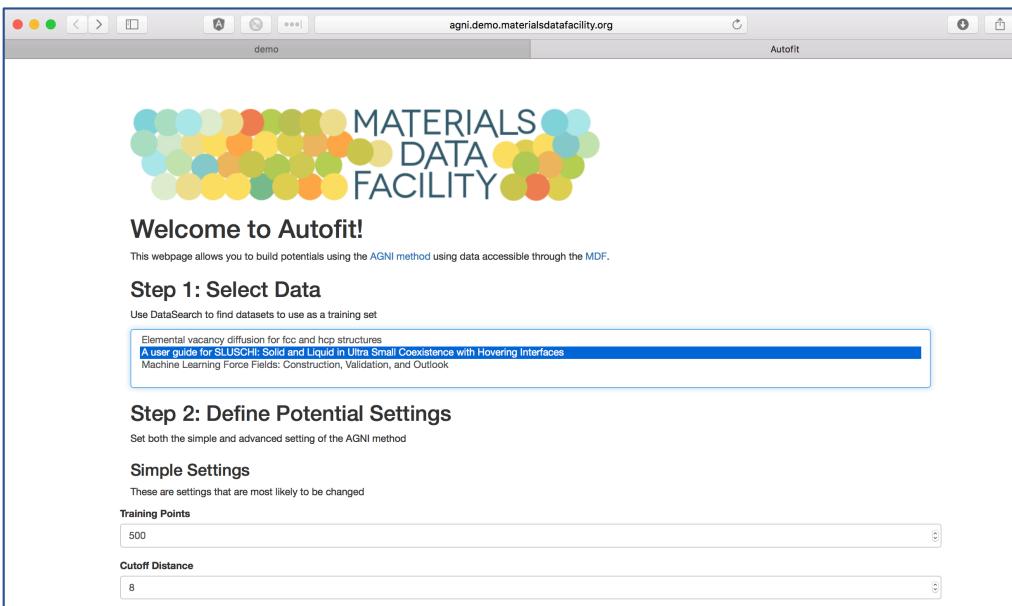
Search for potentials in NIST Interatomic Potentials Repo

search_domain = "globus_search"
client = globus_auth.login("https://datasearch.api.demo.globus.org/", search_domain)

r = client.search("+eam aluminum^2")

Format the discovered potentials

In this example: NIST Interatomic Potentials Repository, NIST Classic Potentials

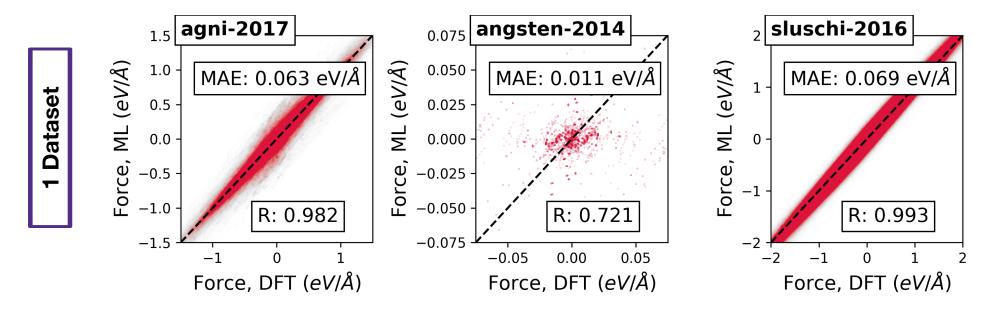

Integrating analytics tools with MDF MML Logan Ward Repository (NIST) **MATIN (GT) MDF** Data **Publication** etstream **Materials** Commons (UM **PRISMS**) **Coherent X-Ray** Tomography Database (LNL) MATERIALS DATA FACIL From Data Repositories To Compute Resources To End Users

<u>Result</u>: Scientists connected with data, analytics tools, and compute capability</u>

Jetstream is a self-provisioned, scalable science and engineering cloud environment operated by Indiana University for the National Science Foundation: jetstream-cloud.org

Building a machine learning model using MDF

A simple web service to simplify AGNI model building


Building a machine learning model using MDF

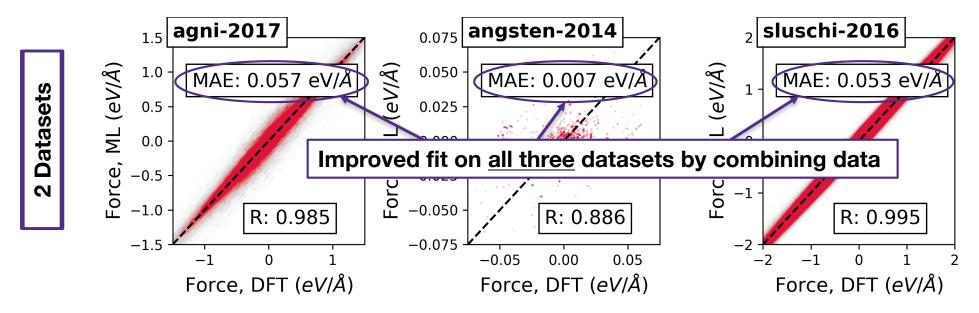
Example: Building force-field potentials from different datasets

Data resources: 3 DFT datasets with AI data

1 dataset from <u>khazana.uconn.edu</u>, 2 datasets from <u>materialsdata.nist.gov</u>

Result: Improved performance by integrating data sources

Method: Botu et al. JPCC. (2017)


Building a machine learning model using MDF

Example: Building force-field potentials from different datasets

Data resources: 3 DFT datasets with AI data

1 dataset from <u>khazana.uconn.edu</u>, 2 datasets from <u>materialsdata.nist.gov</u>

Result: Improved performance by integrating data sources

Method: Botu et al. JPCC. (2017)

Recap and future work

To streamline materials data sharing, discovery, access, and analysis, we have:

- Simplified data publication, enabling ingest of 7 TB in 31 datasets from 11 institutions and 94 authors
- Automated data and metadata capture for deep indexing of large data collections, reaching 1M records from 16 sources
- Unified search across all of these sites and collections
- Deployed APIs enabling programmatic access
- We have demonstrated automated end-to-end discovery, access, and analysis pipelines

Next steps: More data, more indexing, richer search, more analyses

Thanks to our sponsors!

IONAL LABORATORY

