

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

From Science DMZ to a Global Research Platform

Mohammed Naseemuddin – KAUST Jason Zurawski – Lawrence Berkeley National Laboratory / ESnet April 25th 2018

STRATEGIC RESEARCH THRUSTS

SPECIAL FOCUS ON AREAS OF GLOBAL SIGNIFICANCE

Schlumberger

WATER

ENERGY

ENVIRONMENT

GLOBAL PARTNERS

SIEMENS

BOEING

ارامكو السعودية Saudi Aramco

TECHNOLOGY AND RESEARCH ENABLEMENT

Faculty and Sta	aff 2,20 Workford		50 culty	650 Research scientists
	940 Students PhD 20% MS	37% Female	31% Saudi	1,300 Graduates
Community	7,000 Community members	Sc	500 hool Idren	100+ Different nationalities

Numbers as of March 2017

COMMUNITY

the state of the

RESEARCH & TECHNOLOGY PARK


TOWN CENTER CAMPUS

12

INNOVATION CLUSTER

NETWORK NUMBERS

CONNECTIVITY @ KAUST

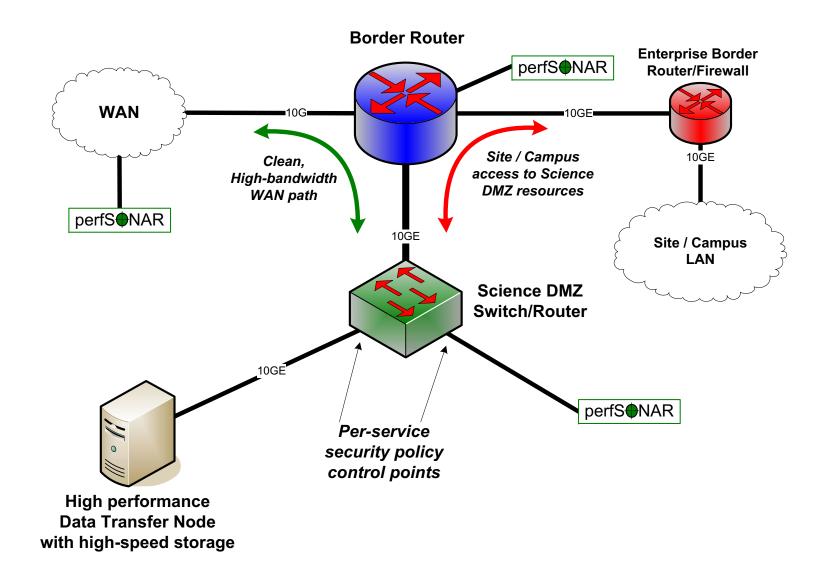
Unique situation requires unique solutions

- 2 x 10Gbps links to Amsterdam
- Campus in Thuwal, KSA connected to NetherLight Open Exchange
- R&E connections to ESnet, Internet2 and GEANT
- Commercial internet via Level3
- Connect up on 2 separate undersea cables and diverse terrestrial routes

A GLOBAL COLLABORATION

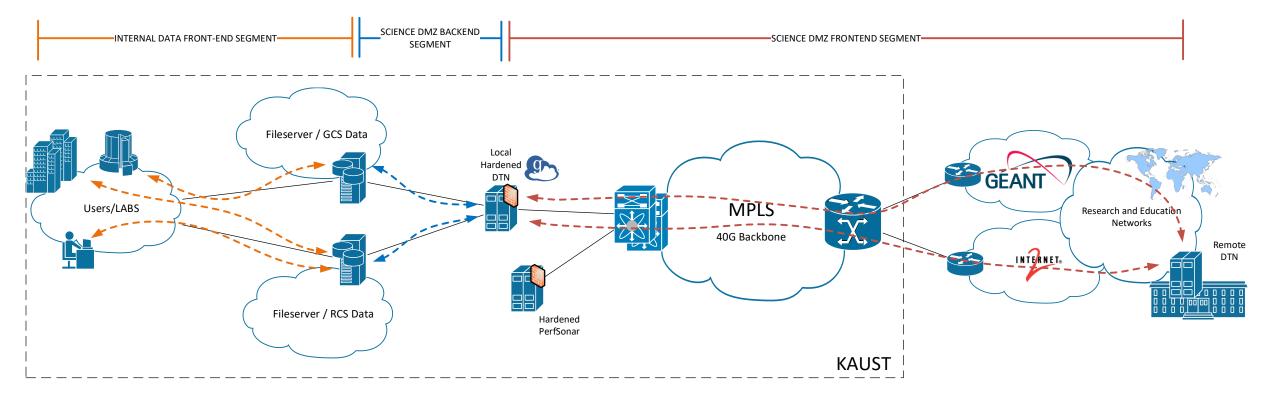
Started as an international university with over 70 partnerships and will remain international

SCIENCE DMZ: A SCALABLE NETWORK DESIGN MODEL FOR OPTIMIZING SCIENCE DATA TRANSFERS


- A network architecture designed for high-performance applications, with the science network distinct from the general-purpose network
- The use of dedicated systems for data transfer

- Performance measurement and network testing systems that are regularly used to characterize and troubleshoot the network
- Security policies and enforcement mechanisms that are tailored for high performance science environments

SCIENCE DMZ (ABSTRACT DESIGN)


START SMALL: POC DEPLOYMENT

- Add-on to existing network infrastructure
 - All that is required is a port on the border router
 - Small footprint, pre-production commitment
- Easy to experiment with components and technologies
 - DTN prototyping
 - perfSONAR testing
- Limited scope makes security policy exceptions easy
 - Only allow traffic from partners
 - Add-on to production infrastructure lower risk

SCIENCE DMZ – CONCEPT IN KAUST CONTEXT

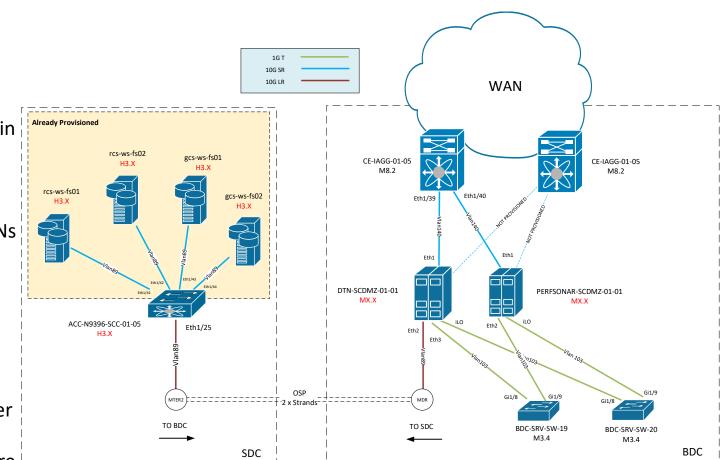
- Least friction path on both backend and front-end segments
- Purpose specific/tuned devices in the path (wire-speed, deep queues)
- Optimized data transfer tools such as Globus and GridFTP on DTN
- Security enforcement specific to science workflows

TESTING INFRASTRUCTURE - PERFSONAR

- perfSONAR is:
 - A widely-deployed test and measurement infrastructure
 - ESnet, Internet2, US regional networks, international networks
 - Laboratories, supercomputer centers, universities
 - A suite of test and measurement tools
 - A collaboration that builds and maintains the toolkit
- By installing perfSONAR, a site can leverage over 2000 test servers deployed around the world
- perfSONAR is ideal for finding soft failures
 - Alert to existence of problems
 - Fault isolation
 - Verification of correct operation

Dedicated Systems – Data Transfer Node

- The DTN is dedicated to data transfer
- Set up **specifically** for high-performance data movement
 - System internals (BIOS, firmware, interrupts, etc.)
 - Network stack
 - Storage (global filesystem, Fibrechannel, local RAID, etc.)
 - High performance tools
 - No extraneous software

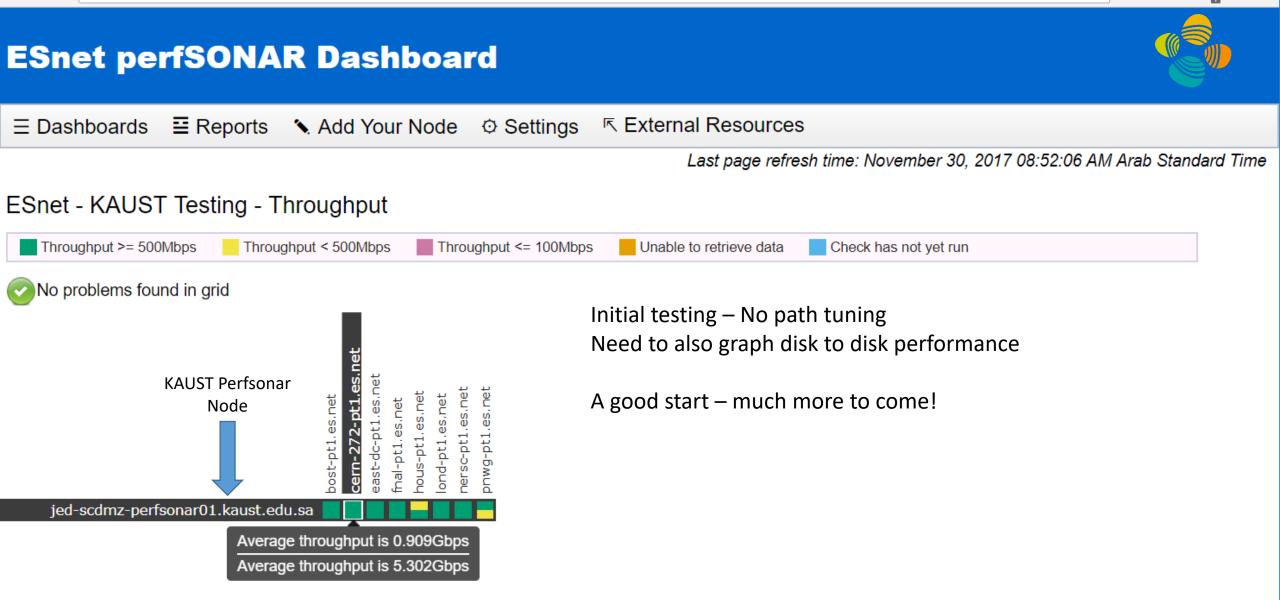

• Limitation of scope and function is powerful

- No conflicts with configuration for other tasks
- Small application set makes cybersecurity easier

KAUST SCIENCE DMZ – PHYSICAL & LOGICAL ARCHITECTURE

NETWORK

- Public front-end segment
 - Reachable only through R&E networks
 - White-list ACL's on network devices in front of DTN's/Perfsonar nodes
- Storage back-end connectivity as a host on the existing storage network
- Ability to stretch infrastructure to remote lab DTNs at 10Gbps
- DTN / MONITORING NODES
 - Hardened Linux systems
 - Globus transfer tools on DTN node
 - PerfSonar software on monitoring node
 - Host level exposing of <u>only</u> science transfer services
 - Management <u>only</u> enabled from the secure management network


DATA MOBILITY IN A GIVEN TIME INTERVAL

Data set size				
10PB	1,333.33 Tbps	266.67 Tbps	66.67 Tbps	22.22 Tbps
1PB	133.33 Tbps	26.67 Tbps	6.67 Tbps	2.22 Tbps
100TB	13.33 Tbps	2.67 Tbps	666.67 Gbps	222.22 Gbps
10TB > 100Gbps	1.33 Tbps	266.67 Gbps	66.67 Gbps	22.22 Gbps
1TB	133.33 Gbps	26.67 Gbps	6.67 Gbps	2.22 Gbps
100GB 100Gbps	13.33 Gbps	2.67 Gbps	666.67 Mbps	222.22 Mbps
10GB < 10Gbps	1.33 Gbps	266.67 Mbps	66.67 Mbps	22.22 Mbps
< 10Gbps	1.00 apps	200.07 10005		22.22 WDp5
1GB	133.33 Mbps	26.67 Mbps	6.67 Mbps	2.22 Mbps
	-			-
1GB	133.33 Mbps	26.67 Mbps	6.67 Mbps	2.22 Mbps
1GB 100MB < 100Mbps	133.33 Mbps 13.33 Mbps	26.67 Mbps 2.67 Mbps	6.67 Mbps 0.67 Mbps	2.22 Mbps 0.22 Mbps

This table available at:

http://fasterdata.es.net/fasterdata-home/requirements-and-expectations/

⊕ ☆

.

